An Update on Current and Emergent Therapies for Essential Thrombocytosis

Daniel H. Foley, MD
Kristen Pettit, MD

The therapeutic landscape for myeloproliferative neoplasms is shifting toward a goal of meaningful disease modification.

Our understanding of pathophysiology driving Philadelphia chromosome–negative myeloproliferative neoplasms (MPNs) has evolved considerably over the past decade. As a result, the therapeutic landscape is shifting toward a goal of meaningful disease modification. For patients with essential thrombocytosis (ET), the immediate goals remain thrombosis risk reduction and symptom control, but newer therapies on the horizon are likely to change our treatment paradigms considerably for this disease.

How do you approach a new patient with ET?
When it comes to the treatment of patients with ET, the main goal of current approved therapy is to mitigate the risk of thrombotic events, as the treatments have minimal impact on disease progression. The choice of treatment is determined by an individual’s specific risk factors for these events. The International Prognostic Score for Thrombosis in ET revised score is used to stratify patients into 4 risk groups: very low risk, low risk, intermediate risk, and high risk. For the majority of low-risk patients, low-dose aspirin is recommended, as it aids in preventing clotting, but patients classified as intermediate or high risk are generally advised to undergo cytoreductive therapy.

What are the standard options for cytoreductive therapy?

The selection of the most suitable cytoreductive agent depends on factors such as the patient’s comorbidities, tolerability of the treatment, future family planning, and individual preferences. Hydroxyurea (HU) and pegylated interferon alfa (peg-IFN) are the primary options for frontline cytoreductive treatment. In the phase 3 study MPD-RC 112 [NCT01259856], which included patients with both ET and polycythemia vera (PV), HU and peg-IFN demonstrated comparable rates of complete response and thrombotic events after 12 months.However, over time peg-IFN has shown improved molecular responses in both ET and PV.1-4 Although the clinical implications of these molecular responses aren’t yet entirely clear, these findings are quite exciting to see in this disease that has been so difficult to target. A longer-acting interferon (ropeginterferon alfa-2b-njft; Besremi) is currently in evaluation for patients with ET and has been approved in the United States for patients with PV. In cases where initial treatment approaches do not yield satisfactory results, anagrelide is another option, though its use is often limited by toxicities (eg, headaches, dizziness, palpitations, and fluid retention).

What is on the horizon for treatment of ET?

As we delve deeper into understanding the biologic drivers of ET, promising new therapeutic directions are emerging, including JAK inhibitors, epigenetic agents, and mutation-specific biologic/immunologic therapies.Ruxolitinib (Jakafi), a JAK1/2 inhibitor already widely used for other MPNs, continues to be evaluated in ET. In a randomized study, MAJIC [NCT05057494], ruxolitinib was compared with best available therapy (BAT) for patients with ET who had resistance or intolerance to HU. Both treatments showed similar rates of hematologic response, thrombosis, and hemorrhage. However, ruxolitinib outperformed BAT in improving disease-related symptoms.5 Another ongoing trial called Ruxo-BEAT [NCT02577926] is further exploring the use of ruxolitinib in ET.

When it comes to epigenetic regulators, BET inhibitors and LSD1 inhibitors are emerging as potential therapeutic targets. Both BET inhibitors and LSD1 inhibitors have shown the ability to reduce cytokine production via different mechanisms and impair self-renewal of malignant hematopoietic stem cells, so they may have more significant disease-modifying activity compared with other agents.6,7 The BET inhibitor pelabresib (CPI-0610) is currently being evaluated for ET as well as myelofibrosis. The LSD1 inhibitor bomedemstat is also being studied for both ET and MF, and preliminary reports from the ET study show encouraging ability to control platelets and improve symptoms for many patients.8

Biologic and immunologic approaches are emerging as promising strategies as well. Recently, at the American Society of Hematology annual meeting in 2022, preclinical data were presented on a monoclonal antibody that targets mutant CALR, a key diver for approximately 25% of patients with ET.9 This antibody showed impressive potency in selectively targeting mutant CALR-driven oncogenic mechanisms. There are also other antibody-based therapies showing significant efficacy in preclinical studies, and these strategies are now moving toward the development phases.10 Furthermore, the discovery of T-cell responses against mutant CALR has sparked the development of vaccine-based treatment strategies.11,12 

What are your final thoughts regarding the future of ET?

The development of more targeted agents with the potential to meaningfully disrupt the mechanisms driving MPNs provides a lot of optimism for the future in these diseases. As these therapies move toward “prime time,” we will need to reassess our treatment goals for our patients. Hopefully we will be able to raise the bar for response from simply hematologic control and thrombosis prevention toward the more lofty aims of lengthening survival, improving quality of life, and lowering risk of disease progression.

REFERENCES:

1. Mascarenhas J, Kosiorek HE, Prchal JT, et al. A randomized phase 3 trial of interferon-alpha vs hydroxyurea in polycythemia vera and essential thrombocythemia. Blood. 2022;139(19):2931-2941. doi:10.1182/blood.2021012743

2. Masarova L, Patel KP, Newberry KJ, et al. Pegylated interferon alfa-2a in patients with essential thrombocythaemia or polycythaemia vera: a post-hoc, median 83 month follow-up of an open-label, phase 2 trial. Lancet Haematol. 2017;4(4):e165-e175. doi:10.1016/S2352-3026(17)30030-3

3.Quintás-Cardama A, Abdel-Wahab O, Manshouri T, et al. Molecular analysis of patients with polycythemia vera or essential thrombocythemia receiving pegylated interferon α-2a. Blood. 2013;122(6):893-901. doi:10.1182/blood-2012-07-442012

4.Kiladjian JJ, Cassinat B, Chevret S, et al. Pegylated interferon-alfa-2a induces complete hematologic and molecular responses with low toxicity in polycythemia vera. Blood. 2008;112(8):3065-3072. doi:10.1182/blood-2008-03-143537

5.Harrison CN, Mead AJ, Panchal A, et al. Ruxolitinib vs best available therapy for ET intolerant or resistant to hydroxycarbamide. Blood. 2017;130(17):1889-1897. doi:10.1182/blood-2017-05-785790

6.Kleppe M, Koche R, Zou L, et al. Dual targeting of oncogenic activation and inflammatory signaling increases therapeutic efficacy in myeloproliferative neoplasms. Cancer Cell. 2018;33(1):29-43.e27. doi:10.1016/j.ccell.2017.11.009

7.Jutzi JS, Kleppe M, Dias J, et al. LSD1 inhibition prolongs survival in mouse models of MPN by selectively targeting the disease clone. Hemasphere. 2018;2(3):e54. doi:10.1097/HS9.0000000000000054

8.Gill H, Palandri F, Ross DM, et al. A phase 2 study of the LSD1 inhibitor bomedemstat (IMG-7289) for the treatment of essential thrombocythemia (ET). Blood. 2022;140(suppl 1):1784-1787. doi:10.1182/blood-2021-148210

9.Reis E, Buonpane R, Celik H, et al. Discovery of INCA033989, a monoclonal antibody that selectively antagonizes mutant calreticulin oncogenic function in myeloproliferative neoplasms (MPNs). Blood. 2022;140(suppl 1):14-15. doi:10.1182/blood-2022-159435

10.Tvorogov D, Thompson-Peach CAL, Foßelteder J, et al. Targeting human CALR-mutated MPN progenitors with a neoepitope-directed monoclonal antibody. EMBO Rep. 2022;23(4):e52904. doi:10.15252/embr.202152904

11.Holmström MO, Martinenaite E, Ahmad SM, et al. The calreticulin (CALR) exon 9 mutations are promising targets for cancer immune therapy. Leukemia. 2018;32(2):429-437. doi:10.1038/leu.2017.214

12.Holmström MO, Riley CH, Svane IM, Hasselbalch HC, Andersen MH. The CALR exon 9 mutations are shared neoantigens in patients with CALR mutant chronic myeloproliferative neoplasms. Leukemia. 2016;30(12):2413-2416. doi:10.1038/leu.2016.233

Read more

Understanding Different Types of Blood Cancers and Diagnostic Procedures

September 3, 2023

Jaishankar Chigurula

Blood cancers encompass a diverse range of types, each with its own set of symptoms and characteristics. Early detection and appropriate diagnostic procedures are crucial for effective treatment and management of these conditions. By recognizing the common symptoms and undergoing comprehensive testing, individuals can increase their chances of early intervention and improved outcomes.

Leukaemia

Leukaemia is a blood cancer that originates in the bone marrow and affects white blood cells, compromising the body’s immune response. Common subtypes include Acute Myeloid Leukaemia (AML) and Acute Lymphoblastic Leukaemia (ALL).

Lymphoma

Lymphomas are blood cancers that target the lymphatic system and involve abnormal lymphocyte growth. Examples of lymphomas include Hodgkin lymphoma and non-Hodgkin lymphoma. These cancers can lead to the enlargement of lymph nodes and other organs.

Multiple Myeloma

Multiple Myeloma is a blood cancer that affects plasma cells, which are crucial for immune function. The overproduction of abnormal plasma cells can damage bones and other organs.

There are also related blood diseases that can progress to Acute Leukaemia:

Myelodysplastic Syndromes (MDS)

MDS is characterized by faulty bone marrow function, resulting in insufficient production of healthy blood cells. In some cases, MDS can progress to acute leukaemia.

Myeloproliferative Neoplasms (MPN)

MPNs are a group of diseases where the bone marrow produces too many specific blood cells. Examples include polycythemia vera, essential thrombocythemia, and myelofibrosis.

Recognizing the symptoms of blood cancers is essential for early detection. While the symptoms can vary depending on the specific type and stage of the cancer, there are common indicators to be aware of. Comprehensive blood tests can reveal abnormal cell counts, types, and characteristics, providing crucial insights into potential blood cancer presence. Bone marrow tests involve the extraction of samples for analysis, aiding in identifying specific cancer types and assessing disease progression.

Specialized testing techniques, such as Flowcytometry immunophenotyping, Cytogenetics, Immunohistochemistry, and Molecular techniques like PCR, Sequencing, and NGS, are used to aid in diagnosis, lineage determination, prognosis, and monitoring of blood cancers. Imaging tests such as CT scans, PET scans, and X-rays help visualize the extent of cancer spread and the involvement of lymph nodes and other organs.

A thorough physical examination can also help identify visible symptoms, such as enlarged lymph nodes, that might indicate blood cancer. In some cases, surgical removal of lymph nodes may be necessary for accurate staging and prognosis determination.

Early detection and prompt diagnosis of blood cancers can significantly improve treatment outcomes. If you experience any concerning symptoms or have a family history of blood cancers, it is important to consult with a healthcare professional for appropriate testing and evaluation.

 

Renin Angiotensin Inhibitors Reduce Thrombotic Adverse Effects in Chronic Myeloproliferative Neoplasms

Kyle Doherty

Patients with essential thrombocythemia and polycythemia vera who also had arterial hypertension experienced a higher cumulative incidence of thrombotic adverse effects compared with those without hypertension and fewer thrombotic complications following treatment with renin angiotensin system inhibitors.

Patients with essential thrombocythemia and polycythemia vera (PV) who also had arterial hypertension experienced a higher cumulative incidence of thrombotic adverse effects (AEs) compared with those without hypertension and fewer thrombotic complications following treatment with renin‑angiotensin system (RAS) inhibitors, according to findings from a retrospective study published in Annals of Hematology.

In the overall cohort of patients with myeloproliferative neoplasms (MPNs; n = 404), treatment with RAS inhibitors conferred a protective effect from thrombotic AEs (HR, 0.46; 95% CI, 0.21-0.98; P = .04), including those with a thrombotic high-risk score (n = 272; HR, 0.49; 95% CI, 0.24-1.01; P = .04). Moreover, patients with essential thrombocythemia and a thrombotic high-risk score experienced an especially defined benefit following treatment with RAS inhibitors (HR, 0.27; 95% CI, 0.07-1.01; P = .03).

“The main goal of managing MPNs is to prevent thrombotic incidents,” study authors wrote. “The results indicated that patients [with MPNs] had a significantly higher risk [4.9-fold] of arterial thrombosis than the healthy controls. We found a protective association between the use of RAS inhibitors and the reduction in thrombotic AEs in our cohort of patients [with MPNs].”

To conduct their study, investigators collected data from patients diagnosed with PV or essential thrombocythemia by WHO 2016 classification who were treated at the Hematology Unit of the Businco Hospital in Cagliari, Italy, from November 2000 through August 2021. Patients with PV were stratified by low risk of developing thrombosis (age < 60 years and no history of thrombosis) and high risk of developing thrombosis (age ≥ 60 years or a history of thrombosis). Patients with essential thrombocythemia were stratified by International Prognostic Score for Essential Thrombocythemia score, cardiovascular risk factors, age over 60 years, thrombosis history, and the presence of a JAK2 V617F mutation. Study authors also collected clinical data at the time of diagnosis, including constitutional symptom, performance status, hemoglobin, white blood cell counts, and the presence of somatic driver gene mutations among other data.

Patients had PV (n = 133) or essential thrombocythemia (n = 271). The median age at diagnosis was 63 years (range, 17-98) and the median follow-up was 5.5 years (range, 0-24) in the overall population. Most patients had comorbidities at diagnosis (70%) and a high thrombotic risk score (67.3%). Cardiovascular AEs experienced before (66.3%) MPN diagnosis included ischemic heart disease (7.7%), peripheral arterial disease (3.5%), cerebrovascular event (6.9%), atrial fibrillation (6.2%), deep vein thrombosis (4.7%), and other (4.2%); after diagnosis, thrombotic AEs (15.0%) that occurred were ischemic heart disease (3.5%), peripheral arterial disease (2.9%), cerebrovascular event (3.7%), and deep vein thrombosis (4.4%).

Most patients also had a positive mutational status (89.3%), including mutations in JAK2 V617F (78.5%), calreticulin (8.9%), and MPL (1.5%); 48.2% of patients also had essential thrombocythemia JAK2 V617F positivity. The therapies received for MPNs were low-dose aspirin (72.3%), phlebotomy (30.0%), cytoreduction therapy (62.9%), and IFN-2a (0.2%).

Median values were 10.5 × 103 /μL (range, 1.0-96.1) for leukocytes, 15.0 g/dL (range, 7.0–15.0) for hemoglobin, and 696 × 103/μL (range, 87–2320) for platelets. Median hematocrit was 48% (range, 29.0%-77.0%).

Investigators noted that “there was a significant difference in the JAK2 V617F mutation status within the group of patients [with essential thrombocythemia] with hypertension (27% vs 21.2%, P = .01).”

Most patients in the study had hypertension (53.7%) and in this subgroup, patients had PV (n = 78/217) and essential thrombocythemia (n = 139/217). Those with positive mutational status (n = 197/217) had JAK2 V617F (n = 182/217), calreticulin (n = 12/217), MPL (n = 3/217), and essential thrombocythemia– positive JAK2 V617F (n = 109/217) mutations. Median values were 10.9 × 103/μL (range, 1.09-19.2) for leukocytes, 15.2 g/dL (range, 10.4-21.0) for hemoglobin, and 720 × 103/μL (139–1170) for platelets. Median hematocrit was 47.6% (range, 33.1%-69.0%).

The majority of patients with hypertension had cardiovascular AEs before being diagnosed with an MPN (n = 216/217) including ischemic heart disease (n = 20/217), peripheral arterial disease (n = 7/217), cerebrovascular event (n = 19/217), atrial fibrillation (n = 15/217), deep vein thrombosis (n = 11/217), and other (n = 9/217); after diagnosis, 39 patients experienced thrombotic AEs; these included ischemic heart disease (n = 10/217), peripheral arterial disease (n = 6/217), cerebrovascular event (n = 12/217), and deep vein thrombosis (n = 11/217).

Additionally, patients with hypertension underwent prior hypertension therapy with a RAS inhibitor (n = 147/217) including angiotensin receptors blockers (n = 87/217), angiotensin-converting enzyme inhibitors (n = 59/217), and inhibitors without association (n = 116/217). Calcium antagonists were given to 52 patients and other agents including thiazide diuretics, beta-blockers, and doxazosin were given to 101 patients. Patients with hypertension also received treatment with low-dose aspirin (148/217), phlebotomy (70/217), cytoreduction therapy (159/217) and IFN-2a (1/217) as therapy for their MPN.

Additional findings showed that the cumulative incidence of thrombotic AEs over 15 years was significantly higher among patients with hypertension (66.8% ± 10.3%) compared with those without (38.5% ± 8.4%; HR, 1.83; 95% CI, 1.08-3.1). Findings from a multivariate analysis also revealed that hypertension (HR, 1.8; 95% CI, 0.983-3.550; P = .05) and PV diagnosis (HR, 3.5; 95% CI, 1.928-6.451; P < .001) were both associated with an increased risk of developing thrombotic AEs. Considering only patients with MPNs and hypertension, diagnosis of PV displayed a predictive role in developing thrombotic AEs (HR, 4.4; 95% CI, 1.92-10.09; P < .01).

“In conclusion, to improve the treatment of patients with MPNs, it is crucial to pay close attention to their cardiovascular risk factors, as these factors play a significant role in the complications of the disease. A more targeted approach could provide more effective and personalized care for patients with MPNs. Although the study’s retrospective nature poses limitations, the robust connections between the RAS system and hematological disorders make it crucial to conduct a more comprehensive analysis of the effects of RAS inhibitors on MPNs,” investigators wrote in summary.

Reference

Mulas O, Mola B, Costa A, et al. Renin-angiotensin inhibitors reduce thrombotic complications in essential thrombocythemia and polycythemia vera patients with arterial hypertension. Ann Hematol. Published online August 21, 2023. doi:10.1007/s00277-023-05417-w

Read more

Momelotinib Could Represent Pivotal New Treatment Option in Myelofibrosis

Ryan Scott
Aaron T. Gerds, MD, PhD, expands on the potential role of momelotinib in the treatment of patients with myelofibrosis who present with anemia, details the data from MOMENTUM, and explains what FDA approval of momelotinib could mean for the treatment of this patient population.

The benefits in symptom burden, spleen size, and transfusion dependence demonstrated by treatment momelotinib in patients with myelofibrosis represent a potential key advance for this treatment paradigm, according to Aaron T. Gerds, MD, PhD.

A new drug application (NDA) seeking the approval of momelotinib as a potential therapeutic option in patients with myelofibrosis is currently under review by the FDA, and the review period was extended to a target action date of September 16, 2023.1

The NDA is supported by data from the phase 3 MOMENTUM trial (NCT04173494), which evaluated the agent in patients with symptomatic and anemic myelofibrosis who received a prior JAK inhibitor. Data showed that 25% of patients treated with momelotinib (n = 130) experienced a reduction in tumor symptom score of at least 50% at week 24 compared with 9% of patients treated with danazol (n = 65; proportion difference, 16%; 95% CI, 6%-26%; P = .0095).2

Additionally, 39% of patients in the momelotinib arm achieved a spleen volume reduction of at least 25% from baseline to week 24 vs 6% in the danazol arm (P < .0001); moreover, 22% and 3% of patients, respectively, experienced a reduction of 35% or more (P = .0011). At week 24, the rates of transfusion independence were 30% (95% CI, 22%-39%) for momelotinib and 20% (95% CI, 11%-32%) for danazol (noninferiority difference, 14%; 95% CI, 2%-25%; 1-sided P = .0016).

“The potential approval of momelotinib is incredibly important for patients. Having additional agents to treat myelofibrosis would be welcomed. As little as a couple of years ago, we only had 1 approved therapy to treat myelofibrosis,” Gerds said in an interview with OncLive®. Gerds is an assistant professor in the Department of Medicine, a member of the Developmental Therapeutics Program, and medical director of the Case Comprehensive Cancer Center in Cleveland, Ohio.

In the interview, Gerds expanded on the potential role of momelotinib in the treatment of patients with myelofibrosis who present with anemia, detailed the data from MOMENTUM, and explained what FDA approval of momelotinib could mean for the treatment of this patient population. Gerds also serves as an associate professor of Medicine in the Department of Hematology and Medical Oncology at the Cleveland Clinic Taussig Cancer Institute.

OncLive: How could the potential approval of momelotinib affect current and future practice patterns for patients with myelofibrosis?

Gerds: The [potential] approval of momelotinib could be another pivotal moment in the care of patients with myelofibrosis. I would argue that the first pivotal moment was the discovery of recurrent JAK2 mutations, followed several years later by the approval of ruxolitinib [Jakafi], the first JAK inhibitor.

Momelotinib provides an extra opportunity for patients, specifically patients who have anemia along with enlarged spleens and significant symptom burden. This drug promises to try to hit all 3 of those key elements of care in patients with myelofibrosis with a single pill.

What unmet needs exist for patients with myelofibrosis and anemia?

Anemia itself in these patients is a key unmet need. Roughly 40% of patients will be anemic at the time of diagnosis. It is common diagnostic and prognostic criteria that is used to predict who may have aggressive disease. Anemia will also develop in patients within the first year after diagnosis, and at some point, every patient will develop anemia as the [bone] marrow begins to fail. Therefore, anemia is something that is incredibly common and difficult to treat.

We can give red blood cell transfusions to combat anemia, but that comes with adverse effects, such as iron overload, transfusion reactions, and the development of alloantibodies. Moreover, blood is a valuable and somewhat scarce resource. The Red Cross is constantly trying to get us to donate more blood because it is a scarce commodity, and it is also expensive to do red blood cell transfusions. In general, it’s one of the biggest costs in delivering health care for patients with hematologic malignancies. For all these reasons, treating anemia is incredibly important.

Treatments for anemia are somewhat limited. I mentioned transfusions already, and there are also erythropoiesis stimulating agents [ESAs] that can be given. Another drug, luspatercept-aamt [Reblozyl], is already approved to treat anemia in patients with myelodysplastic syndrome and beta thalassemia. It is used off-label to treat anemia in patients with myelofibrosis. danazol is also commonly used.

We already have these 3 agents; however, none of them are perfect or work 100% of the time, and there are still many patients who suffer from anemia who have [myelofibrosis]. Any new agent that is coming along that can potentially treat anemia in a different mechanism of action is always welcome.

What is the mechanism of action of momelotinib, and what prompted this agent’s examination in patients with myelofibrosis?

Momelotinib, in terms of treating anemia, works very differently than ESAs, luspatercept, and danazol. It works by inhibiting ACVR1, also known as ALK2, which is a regulator of hepcidin. Hepcidin is a key piece in what we think about in hematology in iron regulation and red blood cell production. It is a hot topic in myeloproliferative neoplasms right now, and it has been in the world of hematology for some time.

Hepcidin is a master iron regulator that helps regulate the shuttling of iron out of the iron stores, making it available for the body to use, for example, to make red blood cells. In patients with myelofibrosis, they have anemia or an inflammatory block, meaning that hepcidin levels are very high and can shut a lot of those iron stores. By lowering the levels of hepcidin by blocking ACVR1, we can restore effective erythropoiesis by dropping that anemia or inflammatory block. That component of a patient’s anemia can be reversed, potentially by this medication.

What were some of the key efficacy data from MOMENTUM?

The MOMENTUM study pitted momelotinib vs danazol, looking at a couple of key end points. The first was symptom burden reduction, and we also looked at spleen volume reduction—traditional end points for measuring response with JAK inhibitors in patients with myelofibrosis. Another key end point was transfusion independence, and that was the proportion of patients who were transfusion independent at weeks 24 and 48.

We saw that momelotinib outperformed danazol in terms of spleen volume reduction, as well as symptom burden reduction. Momelotinib was also statistically not inferior—this was a non-inferiority analysis—for transfusion independence at week 24 compared with danazol.

What does the safety profile look like for momelotinib in this population?

With respect to safety, one of the early concerns during the development of momelotinib was an increased risk of peripheral neuropathy. This was seen in some earlier studies. However, in subsequent investigations, such as the SIMPLIFY trials [NCT01969838; NCT02101268] and the MOMENTUM study, we did not see excess neuropathy in patients treated on momelotinib compared with best available therapy or danazol, respectively. The rates of peripheral neuropathy were similar in the 2 groups. That was a key take-home point in terms of safety data from the MOMENTUM study.

Certainly, some patients did develop cytopenias while on momelotinib, as well as danazol. There weren’t excess gastrointestinal toxicities, as we see with some of the other JAK inhibitors. There was no signal toward increased risk of non-melanoma skin cancers or bile reactivations. However, we certainly watch for those things whenever we’re treating a patient with a JAK inhibitor.

If it is approved, where do you see momelotinib fitting into the current treatment paradigm for this population?

With the potential approval of momelotinib, we will see what the uptake looks like in everyday practice. That will be a big part of what happens with this medication: how organically it is picked up by different oncologists and hematologists out there in the community. Clearly, it has efficacy in patients with anemia, so it would be right at home in the treatment of a patient who has myelofibrosis who needs spleen volume reduction and symptom control, and has anemia.

If we look closely at the MOMENTUM inclusion criteria, those patients did have prior exposure to a JAK inhibitor for at least one month, and they all had hemoglobin [levels] less than 10g/dL; that is where this drug tends to shine. However, the amount of JAK inhibition given to those patients prior to going on MOMENTUM was limited. We also do have up-front data in patients previously untreated [with a JAK inhibitor] from the SIMPLIFY trials. You could say that if a patient with myelofibrosis and is borderline anemic, they could also benefit from momelotinib, not just in the second line, but potentially in the frontline setting as well.

References

  1. Verstovsek S, Gerds AT, Vannuchi AM, et al. Momelotinib versus danazol in symptomatic patients with anaemia and myelofibrosis (MOMENTUM): results from an international, double-blind, randomised, controlled, phase 3 study. Lancet. 2023;401(10373):269-280. doi:10.1016/S0140-6736(22)02036-0
  2. GSK announces extension of FDA review period of momelotinib. News release. GlaxoSmithKline. June 16, 2023. Accessed August 31, 2023. https://www.gsk.com/en-gb/media/press-releases/gsk-announces-extension-of-fda-review-period-for-momelotinib/

Mind-Body Therapies for Anxiety, Depression a Critical Part of Comprehensive Cancer Care

August 30, 2023

The recent publication of a guideline recommending mindfulness-based interventions highlight how important it is as a tactic to address symptoms of anxiety and depression in patients with cancer.

Mind-body therapies have been shown — and are recommended in guidelines — to decrease symptoms of anxiety and depression in patients with cancer who may be at any part of the care continuum, an expert said.

With this whole-person system of care, patients can use techniques including mindfulness-based stress reduction, cognitive therapy, meditation and others to address depression and anxiety symptoms. Now that mindfulness-based interventions are now recommended in a guideline prepared by the Society for Integrative Oncology (SIO) and American Society of Clinical Oncology (ASCO) as a way to treat anxiety and depression during cancer treatment, this may allow more cancer centers to offer this as part of their multidisciplinary care.

CURE® spoke with Linda E. Carlson, Enbridge Research Chair in Psychosocial Oncology and professor in the department of oncology at Cumming School of Medicine at the University of Calgary in Canada, to learn more about the ASCO/SIO guideline that she and an expert committee prepared, why they are important for patients and how patients with cancer can advocate for themselves to obtain care related to integrative oncology.

CURE®: Why are these guidelines so important?

Carlson: We know that patients suffer high levels of anxiety and depression, quite commonly around the time of diagnosis, but also going forward through transitions in care, the end of care, trying to get back into regular life. And so anxiety and depression symptoms can haunt people for a very long time.

At the same time, there’s no really good pharmacological treatments, … and many people prefer to go non-pharmacological, more natural routes.

The integrative therapies, the mind-body therapies that are in this guideline are proven. You can see through the evidence they help decrease symptoms of anxiety and depression. And so they’re non-pharmacological alternatives for patients to help cope with these difficult symptoms.

What exactly is integrative oncology?

The definition of integrative oncology … is this idea that it’s incorporating a whole-person system of care that incorporates conventional treatments, as well as complementary therapies where appropriate to help manage symptoms throughout the continuum, from prevention through lifestyle interventions, things like exercise and nutrition, right through treatment with modalities like the mind-body therapies, natural health products, and into survivorship and even end of life.

The idea is that it’s consistent with the person’s beliefs and values. It takes these complementary therapies that have an evidence base to them, applies them throughout the whole cancer journey to improve treatment tolerance and symptom reduction.

Is integrative oncology meant for all patients regardless of disease, stage and other factors?

Absolutely. The evidence base is a bit lacking for some of the rarer forms of cancer. A lot of the research has been done on women with breast cancer. So there’s definitely some holes in the evidence that have limited the kinds of recommendations that could go into the guideline, because the guideline’s based on very strict criteria, randomized-controlled trials, etc. There have been many studies done with more diverse groups of patients, but not enough to get some of those things in the guideline.

Another side note is that just because a complementary therapy may not be included in the guideline, it doesn’t mean that it isn’t helpful or it doesn’t work. It just means there hasn’t been enough research to date. So for example, things like energy therapies or massage may still have potential, but just didn’t make it into the guideline because there hasn’t been the research done yet.

The strongest recommendation was given to mindfulness-based interventions like stress reduction, meditation and mindful movement. Can you go into more detail about what those are?

We use mindfulness-based interventions as an umbrella term to talk about, usually adaptations that stem from the mindfulness-based stress reduction program that was developed by Jon Kabat-Zinn back in the 1970s.

Mindfulness-based stress reduction has been around for about 40 years, but there’s many different takes on it, different adaptations. So there’s some that are specific for people with cancer, like mindfulness-based cancer recovery, or mindfulness-based stress reduction for breast cancer, there’s mindfulness-based cognitive therapy. But what these all have in common is they’re usually group programs, they usually meet once a week over a period of six to eight weeks.

And people are taught mindfulness meditation techniques. So usually, they practice at home for 20 minutes a day or so of meditation on the breath, on the body. And mindfulness is really this idea of bringing awareness into the present moment, non-judgmentally with kindness, self-compassion with openness. And so the meditation is training people on how to do that in a systematic way. Because often our minds are trained to be out of the present moment. We’re either reliving the past and saying, “Why me? If only this or that.” We have regrets, we get depressed or we’re worrying about the future. The mind’s going off to what if this? What if that? How am I going to cope, all the terrible things that could happen, the pressures. And so, we worry and get anxious.

Depression, regret, worry, anxiety, it’s all caused by the past and future focus. But mindfulness training is more about living in the moment. It’s easy to say, it’s a simple idea, but it’s not easy to do. So the mindfulness based intervention trains people in that capacity to be in the present moment, through sitting meditation, body scan, different kinds of awareness practices, everyday mindfulness.

Usually, they have the form of mindfulness meditation practice. And they also have mindful movement, or yoga, incorporated in them. And that is around bringing awareness into the body, learning to identify when there’s stress or tension, identifying our triggers of stress, we even get into the stories we tell ourselves and the interpretations we make and how that elevates stress. There are many components to a mindfulness-based intervention. But we do know that the studies, many of them have consistently shown that they really help people cope with anxiety and depression.

There has always been some thought that any form of mindfulness would be beneficial for patients with cancer. But why was it so important to put these into a formalized guideline?

The way the medical system works is that the guidelines drive treatment decisions, and they drive insurance reimbursement. So while many people have experienced these therapies and know they’re helpful, until we have it formalized with a recommendation from a trusted body like ASCO, like SIO, that’s the first step in really making it standard of care. In fact, it makes it almost compulsory that for cancer centers to be credited as comprehensive cancer centers, they need to include these types of therapies.

The recommendations around mindfulness-based interventions, the language is “should;” people with cancer should have access, not “may,” which is the less strong language. But they should be part of comprehensive cancer care because we know they’re helpful, and they’re less harmful than other pharmacological approaches and more useful, they’re more effective.

There’s no reason why we shouldn’t take advantage of these relatively low-cost interventions with very few side effects, little harm and make those available to everybody. Everybody who’s suffering from anxiety and depression can benefit. So this is a really important institutional step in moving more towards that idea of having them really part of standard of care.

If a patient thinks that this would be a good fit for their care, how should they bring it up to their cancer team?

I would advise patients to get a copy of those guidelines and put them on the desk the next time they go to see the oncologist and say, “How come we don’t have these programs at our cancer center? Why do I have to go to the community and seek this out and pay out of my pocket? Why isn’t this covered by my insurance?” I think we need the patients to stand up and advocate. And they can use (this guideline) as a tool, a very strong tool to help them do that.

This transcription has been edited for clarity and conciseness.

Read more

Goals of Managing Cytopenic Myelofibrosis in Younger Patients

Targeted Oncology Staff

During a Targeted Oncology™ Case-Based Roundtable™ event, Naveen Pemmaraju, MD, and participants discussed the role of JAK inhibitors in managing myelofibrosis particularly in younger patients who may receive allogeneic stem cell transplant. This is the first of 2 articles based on this event.

CASE SUMMARY

A 62-year-old man presented to his primary care physician (PCP) with symptoms of fatigue, night sweats, and increased bruising​. He had a history of type 2 diabetes, hypercholesteremia, and hypertension​. The PCP noticed lower hemoglobin concentration (11 to 9.5 g/dL) and platelet count (350 × 109/L to 195 × 109/L) from a previous annual physical examination. ​He was referred to a hematologist/oncologist for consultation and evaluation​. ​

Two months post-PCP visit, he went to a hematologic oncologist. Exam findings included a spleen 5 cm below left costal margin, fatigue and night sweats worsening​, bone pain​, hemoglobin of 8.7 g/dL, and platelet count of 135 × 109/L ​. He was diagnosed with primary myelofibrosis (MF); ​bone marrow fibrosis of grade 2, with 35% bone marrow blasts. He had a history of squamous cell carcinoma of the skin​.

Molecular analysis showed a JAK2 V617F mutation and normal cytogenetics​. Blood smear reveals leukoerythroblastosis: 1% blasts by manual count/flow cytometry​. His ECOG performance status (PS) was 2. ​

DISCUSSION QUESTIONS

  • In your practice:​
    • When do you initiate therapy for a patient with MF? ​
    • What is the importance of symptom control? ​
    • How important is it to initiate therapy early? ​
    • When do you start JAK inhibitor therapy?​
    • Do you choose your initial JAK inhibitor based on patient symptoms? ​

DAI CHU LUU, MD: My standpoint is that a 62-year-old is still young. I have transplant physician within 5 miles of my practice. I would definitely send to a transplant physician…see what they have to say, and then follow up on the recommendations. Usually they’ll give recommendations and then I’ll act on them. Whenever things get tough, I’ll send it to them to establish care.

NAVEEN PEMMARAJU, MD: That’s great. What do you think about JAK [Janus kinase] inhibitor therapy? [Would you use] monotherapy as standard of care up until the transplant?

LUU: Yes.

PEMMARAJU: If the platelets are below 50 × 109/L, what we’ve been doing [in the past] is either giving ruxolitinib [Jakafi] or low-dose ruxolitinib. Maybe you’re doing something different. Has anyone yet prescribed the new agent, pacritinib [Vonjo], which is approved in this lower than 50 × 109/L setting?

SRIKAR MALIREDDY, MD: I have prescribed pacritinib. I had a patient on ruxolitinib for the longest time and then eventually the disease progressed and I could not do any more administration of ruxolitinib. He’s been on [pacritinib] for at least 7 to 8 months.

PEMMARAJU: [Was there] any diarrhea or bleeding events? Or has it been well tolerated?

MALIREDDY: There were no [tolerability issues]. I was very careful with starting with a low dose, and then ramping up. We also watched the platelet counts, and so far…[he has] 30 × 109/L to 40 × 109/L platelets.

PEMMARAJU: What dose did you start? Did you start at 100 mg? Because the approved dose is 200 mg twice daily.1

MALIREDDY: Yes, I started at 100 mg. [Since] he was tolerating it, he is at the maximum dose right now. He’s at 200 mg.

PEMMARAJU: That’s a great story. Did you have any difficulty getting it through insurance or through your specialty pharmacy?

MALIREDDY: This was one of the patients…who initially got azacitidine [Onureg] in combination with ruxolitinib. He was on a clinical trial for that.

PEMMARAJU: For the ruxolitinib/azacitidine trial [NCT01787487]?

MALIREDDY: Yes, exactly. He had some severe cytopenias, myelosuppression, and all that [on the clinical trial]. Eventually, the cytopenias progressed, then [he started on pacritinib]. I didn’t have any issues with getting approval.

PEMMARAJU: That’s great. The combined answer from both of you is the cutting-edge state of the art, which is offering a JAK inhibitor [while] trying to get to [allogeneic stem cell] transplant. We all assume—and it ends up being correct a lot of the time in our patients with myeloproliferative neoplasms as opposed to leukemia or some of the other [disease] states— what happens is [patients have an] ECOG PS of 2 to 3, but they have PS of 0 to 1 after the initiation of JAK inhibitor. With ruxolitinib, it’s usually about 3 months that you see it. After 1 week to 1 month, you start feeling great; by month 2 and 3 is the plateau.

DISCUSSION QUESTIONS

  • What are the therapeutic goals of therapy for a patient with aggressive disease? ​
  • When do you consider clinical trial enrollment?

PEMMARAJU: All of us in the field are thinking about the significance of cytopenic MF. It helped lead to the drug approval for this JAK inhibitor [pacritinib], which is great because I have had several similar situations in prescribing it. It’s a very well tolerated drug. But…how frequent is this? Most people in our field think that the cytopenias are treatment related or they happened later on. That is common. But thrombocytopenia and anemia can occur in a quarter or more of our patients at baseline. Some of these patients present…with fairly advanced disease. How often do you encounter a baseline platelet count of less than 50 × 109/L at any point in the myelofibrosis trajectory? And before pacritinib…what were you giving these patients if you had to treat them?

JAGATHI CHALLAGALLA, MD: [I would give] low-dose ruxolitinib, or if they’re transfusion independent, just observation.

PEMMARAJU: Yes, exactly, [or] sometimes we would…give danazol or steroids. Now we know that delivering suboptimal doses is leading to suboptimal outcomes.2 If you’re not reducing the spleen, not improving the symptoms, patients won’t do as well. The benefit of pacritinib…is you can give the full dose of the drug. We heard 1 story of being very cautious, but you can prescribe it as the 200 mg dosing even in the thrombocytopenic setting.1 Just watch out for diarrhea, usually resolved in the first 4 to 6 weeks. It’s usually well managed, but you and the patient need to know about it. There was some concern about cardiac bleeding events…particularly for patients on anticoagulants, but it is a fairly well-tolerated drug.

Say the patient is 82 years old, and transplant is off the table. [For] low platelet count, you’re giving a low dose of ruxolitinib, [or] you’re giving pacritinib…or fedratinib [Inrebic]. What is the goal of therapy in a patient who’s a non-transplant candidate for whom you’re giving a JAK inhibitor?

ANANTH ARJUNAN, MD: For the patient, the symptom improvement is critical. Along with that getting the spleen [size] down is important, not just for survival benefit, but for the patient to feel better. In terms of discussing treatment options, we go through the different JAK inhibitors, typically based off comorbidities, and then their [blood cell] counts. I haven’t found a reason to use fedratinib. It’s usually a question of ruxolitinib or pacritinib. For clinical trial enrollment, any time is appropriate, although we might wait until they become JAK inhibitor resistant, although you have some options recently with momelotinib.

References:

1. Vonjo. Prescribing information. CTI BioPharma Corp; 2022. Accessed August 29, 2023. https://tinyurl.com/yxjnn7yu

2. Maffioli M, Mora B, Ball S, et al. A prognostic model to predict survival after 6 months of ruxolitinib in patients with myelofibrosis. Blood Adv. 2022;6(6):1855-1864. doi:10.1182/bloodadvances.2021006889

Read more

CWP-291 by JW Pharmaceutical for Thrombocythemia Myelofibrosis: Likelihood of Approval

August 30, 2023

CWP-291 is under clinical development by JW Pharmaceutical and currently in Phase I for Thrombocythemia Myelofibrosis. According to GlobalData, Phase I drugs for Thrombocythemia Myelofibrosis have a 90% phase transition success rate (PTSR) indication benchmark for progressing into Phase II. GlobalData’s report assesses how CWP-291’s drug-specific PTSR and Likelihood of Approval (LoA) scores compare to the indication benchmarks.

GlobalData tracks drug-specific phase transition and likelihood of approval scores, in addition to indication benchmarks based off 18 years of historical drug development data. Attributes of the drug, company and its clinical trials play a fundamental role in drug-specific PTSR and likelihood of approval.

CWP-291 overview

CWP-291 (CWP-232291) is under development for the treatment of hematological tumors including relapsed or refractory acute myeloid leukemia (AML), chronic myelomonocytic leukemia-2, relapsed and refractory multiple myeloma, gastric cancer, myelofibrosis (PMF), post-polycythemia vera (PPMF), castration-resistant prostate cancer (CRPC) and post-essential thrombocythemia (PTMF). The drug candidate is administered intravenously. It acts as Sam68 inhibitor. It was also under development for the treatment solid tumors such as breast cancer, liver, lung cancer and myelodysplastic syndrome.

JW Pharmaceutical overview

JW Pharmaceutical, a subsidiary of JW Holdings Corp, is a provider of generic drugs. The company develops and markets analgesics, antipyretics and cold remedies, antidote agents, antimicrobials, anticancer agents, and others. It offers multivitamins and antianemia agents, contact lens care and ophthalmic agents, antifungal agents, cardiovascular agents, and gastrointestinal agents. JW Pharmaceutical also offers topicals, amino acid solutions, flexible IV containers, IV solutions, respiratory agents, nephrology agents, CNS, urology agents and diabetic agents. The company offers products for cardiovascular, gastrointestinal, nephrology and antianemia, anticancer and neuropsychiatry. It operates through its production and manufacturing facilities in South Korea. JW Pharmaceutical is headquartered in Seoul, South Korea.

Read more

Dr Halpern on the Investigation of Upfront Ruxolitinib and Navitoclax in Myelofibrosis

Anna B. Halpern, MD

Anna B. Halpern, MD, physician, assistant professor, Clinical Research Division, Fred Hutch; assistant professor, hematology, University of Washington School of Medicine, discusses investigational efforts being developed to expand on the use of ruxolitinib and navitoclax in earlier treatment lines for patients with myelofibrosis.

In cohort 3 of the phase 2 REFINE trial (NCT03222609), the combination of ruxolitinib and navitoclax was evaluated in the upfront setting for patients (n=32) who had not been previously exposed to a JAK inhibitor. The study’s primary end point was spleen volume reduction of 35% or greater from baseline at week 24.

An exploratory analysis of this cohort was presented at the 2022 ASH Annual Meeting and Exposition, Halpern begins. Findings showed that navitoclax plus ruxolitinib produced a spleen volume reduction of at least 35% at week 24 across specific patient subsets, she details. These subsets consisted of patients 75 years of age or older, those with a high Dynamic International Prognostic Scoring System score, and those with HMR mutations. The percentage of patients who experienced optimal spleen volume reduction in these subgroups are 50%, 33%, and 47%, respectively.

Notably, changes in bone marrow fibrosis and reductions in the variant allele frequency (VAF) of the driver gene mutation were seen with the combination regimen in many patients, Halpern continues. Half of patients achieved a greater than 20% reduction in VAF from baseline at week 12 or 24, while a greater than 50% VAF reduction from baseline occurred in 18% of patients. When comparing those with or without HMR mutations, no differences in greater than 20% VAF reduction from baseline to week 12 or 24 were observed between populations.

These results indicate the potential disease-modifying ability of ruxolitinib and navitoclax, suggesting that reductions in bone marrow fibrosis and VAF may serve as biomarkers for disease modification, Halpern states. Notably, long-term outcomes cannot be definitively assessed as correlates for leukemia, progression, and survival, she adds. The viability of these 2 biomarker candidates should be assessed more short term, and in larger study populations, Halpern concludes.

Read more

Selinexor by Karyopharm Therapeutics for Chronic Idiopathic Myelofibrosis (Primary Myelofibrosis): Likelihood of Approval

August 28, 2023

elinexor is under clinical development by Karyopharm Therapeutics and currently in Phase II for Chronic Idiopathic Myelofibrosis (Primary Myelofibrosis). According to GlobalData, Phase II drugs for Chronic Idiopathic Myelofibrosis (Primary Myelofibrosis) does not have sufficient historical data to build an indication benchmark PTSR for Phase II. GlobalData uses proprietary data and analytics to create drugs-specific PTSR and LoA in the Selinexor LoA Report. 

GlobalData tracks drug-specific phase transition and likelihood of approval scores, in addition to indication benchmarks based off 18 years of historical drug development data. Attributes of the drug, company and its clinical trials play a fundamental role in drug-specific PTSR and likelihood of approval.

Selinexor overview

Selinexor (Xpovio, Nexpovio) is an antineoplastic agent. It is formulated as film coated tablets for oral route of administration. Xpovio in combination with dexamethasone is indicated for the treatment of adult patients with relapsed or refractory multiple myeloma (RRMM) who have received at least four prior therapies and whose disease is refractory to at least two proteasome inhibitors, at least two immunomodulatory agents, and an anti-CD38 monoclonal antibody. Xpovio is indicated for the treatment of adult patients with relapsed or refractory diffuse large B-cell lymphoma (DLBCL), not otherwise specified, including DLBCL arising from follicular lymphoma, after at least 2 lines of systemic therapy. Xpovio in combination with bortezomib and dexamethasone is indicated for the treatment of adult patients with multiple myeloma who have received at least one prior therapy. It is also under development for the treatment of soft tissue sarcoma, osteosarcoma, leiomyosarcoma, pleomorphic liposarcoma, synovial sarcoma, epithelial ovarian cancer.

Selinexor (KPT-330) is under development for the treatment of light chain amyloidosis, anaplastic astrocytoma, diffuse intrinsic pontine glioma (DIPG), high-grade glioma (HGG), newly diagnosed advanced hepatocellular carcinoma, metastatic urothelial carcinoma, relapsed or refractory peripheral T cell lymphoma and natural killer T cell lymphomas,  relapsed/refractory indolent non-Hodgkin lymphoma (R/R iHNL), malignant peripheral nerve sheath tumor (MPNST), leiomyosarcoma, endometrial stromal sarcoma, ovarian carcinoma, endometrial carcinoma, fallopian tube cancer, metastatic triple negative breast cancer, thymoma, non-small cell lung cancer, cervical carcinoma, non-Hodgkin lymphoma, melanoma, colon cancer, gastroenteropancreatic tumors, prolymphocytic leukemia, small lymphocytic lymphoma, recurrent glioblastoma, follicular lymphoma, mantle cell lymphoma, chronic lymphocytic leukemia (CLL), relapsed/refractory multiple myeloma (MM), relapsed and refractory acute myelogenous leukemia (AML), diffuse large B-cell lymphoma, chondrosarcoma, synovial sarcoma, liposarcoma, leiomyosarcoma, blast-crisis chronic myelogenous leukemia (bc-CML), relapsed and refractory acute lymphoblastic leukemia, rectal cancer, lung cancer, gynecological cancer, Penta-refractory multiple myeloma, recurrent/refractory high-grade gliomas, myelofibrosis, primary myelofibrosis, Post-Polycythemia Vera Myelofibrosis, Post-Essential Thrombocythemia Myelofibrosis (Post-ET MF), Ewing sarcoma and myelodysplastic syndrome, gastrointestinal stromal tumor (GIST), non-small cell lung cancer and recurrent glioma. The drug candidate is administered orally as a tablet and topically as a gel. It is a SINE compound that acts by targeting CRM1 (chromosome region maintenance 1 protein, exportin 1 or XPO1). It is being developed based on Selective Inhibitor of Nuclear Export (SINE) compound technology.

It was also under development for the treatment of coronavirus disease 2019 caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), refractory or relapsed Richter’s transformation, metastatic castrate-resistant prostate cancer, advanced squamous cell carcinoma of head and neck, lung cancer and esophageal cancer, relapsed/refractory cutaneous T cell lymphoma, relapsed small cell lung cancer, rectal adenocarcinoma, gastric cancer, metastatic colorectal cancer and diabetic foot ulcers.

It was also under development for the treatment of recurrent glioblastoma multiforme.

Karyopharm Therapeutics overview

Karyopharm Therapeutics (Karyopharm) discovers and develops novel drugs for the treatment of cancer and other diseases. The company’s core technology harnesses the inhibition of nuclear export as a mechanism to treat patients suffering from cancer. Karyopharm’s lead product, Xpovio, is being developed for the treatment of multiple myeloma, and relapsed or refractory diffuse large B-cell lymphoma. Its pipeline drug candidates include selinexor, eltanexor, verdinexor, and KPT-9274. Karyopharm’s drug candidates are indicated for the treatment of various hematological and solid tumor malignancies including multiple myeloma, diffuse large B-cell lymphoma, liposarcoma, glioblastoma and endometrial cancer. The company has operations in the US, Israel and Germany. Karyopharm is headquartered in Newton, Massachusetts, the US.

Read more

Patients with MPNs ‘Don’t Know What They Don’t Know’

Alex Biese

For patients with myeloproliferative neoplasms (MPNs) — blood cancers that cause the bone marrow to overproduce red or white blood cells or platelets — being able to engage in educated and productive conversations with their care team can be crucial.

“There are so many variables in cancer from not only the diagnoses, but ‘how do we treat it?’ to what the prognosis is, and that’s always evolving (so) that it’s hard for providers to keep up with that, let alone patients,” said Charina Toste, a nurse practitioner specializing in oncology and hematology at OptumCare Cancer Care and a professor at Chamberlain College of Nursing, both located in Las Vegas, Nevada.

When it comes to the vast category of MPNS (which includes a range of diseases such as myelofibrosis, essential thrombocythemia, and polycythemia vera) patients don’t know what they don’t know.

“(Patients) don’t always know, what is the treatment that’s out there? What are the clinical trials that are out there? Oh, and then let’s talk about symptom management, how is my life going to change? How is this going to affect me? How is this going to affect my family? These are questions patients don’t even know to ask. And they trust their health care provider to have the three or four hours it takes to educate them at an appointment that usually is only 15 to 30 minutes.”

Toste spoke with CUREⓇ about the importance of education for patients with MPNs in order to empower themselves to have informed conversations with their care team.

CUREⓇIn general, why is it so important for patients to educate themselves, and be prepared to have informed conversations with their care team as they’re going through their cancer journey?

pull quote: "I think it's important to at least have a solid basis of information about your disease, your cancer diagnosis, so you know what to ask."

Patients with myeloproliferative neoplams should learn about their disease to ensure that they know what questions to ask, a nurse practitioner said.

TosteI think because with any type of diagnosis, there’s kind of the shock factor. And once you get over the shock factor, it’s a different language that patients are learning, it’s a different lifestyle that they’re learning, they have to learn to adjust their entire life for it. And many patients don’t know what to ask because they don’t know what they don’t know.

So, I think it’s important to at least have a solid basis of information about your disease, your cancer diagnosis, so you know what to ask. There are so many variables in cancer, from not only the diagnoses, but how we treat it to what the prognosis is, and that’s always evolving (so) that it’s hard for providers to keep up with that, let alone patients.

What sorts of questions should patients be prioritizing, especially if they are early on in the experience?

‘What is their current diagnoses?’ specifically, so that they understand their diagnoses. Quite honestly, they hear the words and they don’t understand what those words mean; if they see myeloproliferative neoplasms, that’s all they might look up and not know their specific diagnoses (or) that there are different types underneath there.

As we well know, there are so many different hematological malignancies. And when you say the word leukemia, there are 200 different types of leukemia. So, you have to know exactly what you have. And what does that mean to you? What does that mean, as far as prognosis? What can I expect now? And what can I expect in the future? So they can adjust their life.

Because if anything, after a world pandemic has happened, we realize we can’t always predict the future and we have to enjoy what we have to the best (of our) abilities. So, does this mean I have to quit my job? Does this mean I need to adjust my family lifestyle? Should I move to where I have family and support? Will I be OK here on my own? I think those are the questions that they need to ask: how is it going to impact them personally now and in the future so they can prepare?

What are some specific challenges or roadblocks related to MPNs that make it a particularly disease type for patients to inform themselves on?

Not always but usually, most of these diagnoses are based in an elderly population. So, with the myelofibrosis and the polycythemia vera, you’re usually looking around the 60s or 70s age group. And for a lot of these patients, they don’t always have the best support, so they don’t always know how to go to Dr. Google and look everything up. They don’t always know what the latest clinical trials are, they don’t always know how to ask those questions. And they aren’t always surrounded by family members, their children are grown, they have their own lives. So, they don’t always have that support that others would have. Sometimes they’re on their own, and they don’t have transportation. They’re wondering about the basics: economics, transportation, those kinds of things. So that’s how it affects them. And those can be some of the obstacles going forward for these patients in obtaining information. And then (for) some of these patients, some are working, some aren’t some are active and family, some aren’t. Some are socially active.

And I also think in an elderly population, what are some of the symptoms, when you look at a patient and they go, ‘Well, yes, I’m tired. Yes, I have bone pain, but I’m 80. How do I know that this is disease related?’ So, I think those are also some of the obstacles. Whereas if you’re 20 or 30 years old, and you’re saying, ‘Wow, I have a lot of bone pain, I have a lot of fatigue, I have memory loss,’ that’s going to seem unusual at that age versus if you’re older, a lot of times you just take it as the age and the sands of time moving forward. First, is this actual disease might be progressing.

Say there is a patient who is kind of between doctor visits and is looking to inform themselves further, what are some resources that are out there for patients to turn to if they’ve got weeks or months to go before they see their provider for the next time?

Sometimes I always feel there’s not enough. I know there are associations that they can look up and reach out to. I know there are support groups, there are Facebook support group pages. Sometimes, though, you have to worry about the accuracy of information. I know there are pharmaceutical companies out there that also provide information about their medications, or sometimes just disease-related treatments and information. So, that’s out there.

But honestly, it’s (about) going to the journals of medicine or magazines or things like that to get more neutral, objective information, honestly, because you don’t know and I hear so many times as provider, ‘Well, I read this on the Internet,’ and I thought, ‘Oh, wow, that was a big waste of time.’ And it really skews what (information) they have. Or they get information from (people who) say, ‘Oh, well, in healthcare, I know this.’ Well, it’s not our healthcare system. They might have followed health care systems overseas. So different societies and different cultures have different decisions when it comes to treatment plans and pathways. So sometimes, I think it’s very challenging for them to find accurate information, even in today’s society.

Read more